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ABSTRACT
In this paper, we focus on bird audio detection in short audio
segments (namely 10 seconds) using stacked convolutional
and recurrent neural networks. The evaluation data for this
task was recorded in an acoustic soundscape different from
the development data, thus motivating to work on methods
that are generic and context independent. Data augmentation
and regularization methods are proposed and evaluated in this
regard. Area under curve (AUC) measure is used to com-
pare different results. Our best achieved AUC measure on
five cross-validations of the development data is 95.3% and
88.41% on the unseen evaluation data.

Index Terms— Bird audio detection, convolutional recur-
rent neural network

1. INTRODUCTION

Bird audio detection (BAD) is defined as identifying the pres-
ence or absence of bird call/tweet in a given audio recording.
This task acts as a preliminary step in the automatic moni-
toring of biodiversity. Post identifying the presence of bird
call activity, a species based classifier can recognize the bird
call more accurately. In this regard, the bird audio detection
challenge [1] was organized with an objective to create ro-
bust and scalable algorithms which can work on real life bio-
acoustics monitoring projects without any manual interven-
tion. The challenge provided annotated and non-annotated
bird call recordings. The former were selected from a wide
range of field and crowd-sourced recordings and is utilized
as the training dataset. The latter are recordings from a com-
pletely different geographical location and employed as the
test dataset.

In this paper, we propose to use methods from the sound
event detection (SED) task and adapt it to the specific problem
of detecting bird calls, approaching the BAD as a SED prob-
lem. The rest of the paper is organized as follows. Acoustic
features representing the harmonic and non-harmonic content
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of the audio used in our BAD system are discussed in Section
2. The state of the art network for SED task and its config-
uration for the BAD is explained and presented in Section 3.
Different regularization and data augmentation techniques are
studied for generalizing the BAD systems and the results are
reported and discussed in section 4.

2. FEATURES

Bird call is a natural phenomenon like human speech and is
used by them to communicate with birds of the same species.
Just like human speech and singing, bird calls can have har-
monic, non-harmonic, broadband and noisy structure [2].

In this paper, we experiment with two features and an-
alyze their contributions. The overall harmonic and non-
harmonic content of the audio is represented using the log
mel-band energy feature (referred as mel in future). mel has
also been shown to be effective in the general SED tasks [3].
We represent the harmonic content in an audio using the
three dominant frequencies and their respective magnitudes
(referred as dom-freq in future). dom-freq has been used
as a perceptual feature in SED tasks [4] and has provided
considerable improvement when used along with mel.

Both the features were extracted from Hamming window
frames of 40 ms length with 50% overlap. The three dom-
freq’s were extracted in the range of 500-8000 Hz. The ex-
traction was done on thresholded parabolically-interpolated
STFT [5] using the librosa implementation [6]. The log mel-
band energy was calculated for 40 mel-bands in 0-8000 Hz
range.

3. STACKED CONVOLUTIONAL AND RECURRENT
NEURAL NETWORKS

In the case of general SED, the best results have been reported
in [3] using stacked convolutional and recurrent neural net-
works (CRNN). Similar combined CRNN architecture have
also been proposed in automatic speech recognition [7] and
music classification [8]. The CRNN architecture exploits the
combined modeling capacities of a convolutional neural net-
work (CNN), recurrent neural network (RNN), and fully con-
nected (FC) layer. In [4], these CRNN’s were extended to
accommodate multiple feature classes and the feature maps
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Fig. 1. Stacked convolutional and bi-directional recurrent
neural networks (CBRNN) architecture for bird audio detec-
tion using multiple feature classes

from CNN’s were processed using bidirectional RNN. This
system was called the convolutional bidirectional recurrent
neural network (CBRNN). We use this CBRNN for recog-
nizing the presence of bird call in the audio.

Each of the feature classes, mel and dom-freq, is han-
dled separately in CBRNN. T frames of 40 mel from mono
channel audio are stacked into a volume of T ×40×1. While
the three frequencies and their amplitudes of dom-freq are
layered into a volume of T × 3 × 2. Separate CNN’s are
employed to learn local shift-invariant features from each of
these volumes as shown in Figure 1. A max pooling operation
is performed after every CNN layer in both the axes reducing
the final dimension of both the feature classes to 5 × 1 ×N ,
where N is the number of filters in the last CNN layer. We
use a receptive field of 3× 3 for all CNN’s. The feature maps
from CNN are merged using a multiplication operation and
fed to bi-directional gated recurrent unit (GRU) layers fol-
lowed by fully-connected time distributed dense layers. The
output layer consists of a maxout dense layer with sigmoid
activation function.

Batch normalization [9] was employed for all the CNN
layers. The CBRNN was trained with back-propagation
through time [10] using adam optimizer [11] and mean square
error objective. In order to reduce overfitting of the model,
early stopping was used to stop training if the area under curve
(AUC) measure (Section 4.2) did not improve for 50 epochs.
Dropout [12] was employed as regularizer to make the model
generic and avoid overfitting to the training data. The input
to the network was the complete 10-second audio, amounting
to T = 500 frames, while the output of the network is the
posterior probability in [0, 1] range, where a posterior closer
to one represents the presence of bird call. Keras [13] was

Dataset Bird call
present absent

freefield1010 5755 1935
warblr 1955 6045
Total 7710 7980

Table 1. Bird audio detection challenge [1] development set
statistics

used to implement the neural network architecture.

4. EVALUATION AND RESULTS

4.1. Datasets

The bird audio detection challenge [1] consisted of a devel-
opment and an evaluation set. These data came from three
separate datasets: i) field (freefield1010), ii) crowdsourced
(warblr), and iii) remote monitored (chernobyl). While the
development set comprised of freefield1010 and warblr only,
the evaluation set comprised of data unseen in development,
predominantly coming from the chernobyl dataset. Record-
ings in both the sets were 10 seconds long, mono channel and
sampled at 44.1 kHz. The labels for the development set were
binary - bird calls present or absent. The statistics of the de-
velopment set are presented in Table 1. The evaluation set
consisted of 8620 audio recordings.

From the development set, we generated five cross-
validations (CV) splits of 60% training, 20% validation,
and 20% testing. Each split had an equal distribution of birds
call present and absent. All development set results in future
are the average performance on this five CV split.

For the challenge submission, the CBRNN is trained on
three CV splits of 80% training and 20% validation done on
development set, with equal distribution of classes in each
split. For each of the CV split the trained CBRNN is evalu-
ated on the unseen test set, and the average posterior score is
submitted as the final result.

4.2. Metrics

The BAD system output is evaluated from the receiver oper-
ating characteristic (ROC) using the area under curve (AUC)
measurement [14].

4.3. Results

For the hyper-parameter estimation of CBRNN, we experi-
mented with 1 to 4 layers each of CNN, RNN and FC. The
number of units for each of these layers were varied in the set
of [4, 8, 16, 32, 64, 128]. The same dropout rate was used for
all layers and varied in the set of [0.25, 0.50, 0.75]. The pa-
rameters were decided using a five cross-validation over the
development set. The best configuration with least number of
weights had two layers of CNN’s with 8 filters each, one layer



each of RNN with 8 units and an FC with 8 units. This con-
figuration had only 2,600 weights and gave an AUC of over
95% on the development set. Other higher configuration of
CBRNN, having up to 500,000 weights did not show any sig-
nificant improvement, and the AUC score was comparable to
the 2,600 weights configuration.

Similar hyperparameter experiments were done for the
mel and dom-freq features individually, and the same
CBRNN configuration was seen to be one of the top per-
formers on the development set with over 95% AUC for mel
and around 87% for dom-freq. This can be accounted to the
fact that mel can represent both harmonic and non-harmonic
structure of a bird call. Whereas, dom-freq in itself cannot
justify the non-harmonic structure.

The best CBRNN configuration was seen to generalize
well with a dropout of 0.75 and was seen to overfit for 0.25
and 0.50. The overfitting was observed from the training and
validation AUC score plot with respect to training epochs. On
employing early stopping, we control this overfitting at differ-
ent drop out rates and achieve a comparable AUC of over 95%
on the development set.

The CBRNN network and training configurations derived
from the development set were now used for the challenge
submission, for which the CBRNN’s were trained on the three
CV on the development set as described in section 4.1. The
average of validation score of the three CV and the corre-
sponding evaluation score for different dropout rates is pre-
sented in Table 2. We see that across the feature classes,
and the drop out rates, the validation scores are comparable.
While, the test scores are seen to vary about 4% across the
features.

To test the statistical significance of this 4% we went
through the results of the validation data. We thresholded
the posterior probability of final maxout dense layer using
a value of 0.5, ie, all recordings which had greater than 0.5
were flagged to have bird call, or otherwise absent. Among
the 3138 validation recordings, there were 377 recordings
classified wrongly. 242 of these were false positives accord-
ing to the ground truth, ie, the recording was flagged to have a
bird call, when it was absent. On listening through these false
positives randomly, we found 37 of the 70 recordings having
noticeable bird audio activity. Similarly, in false negatives,
we found 7 of 30 recordings to have no bird activity. In total
42 of 100 recordings tested had wrong labels. From these,
some of the recordings needed sharp ears to identify the pres-
ence and absence of birds call. A small rate of such errors are
obvious in any kind of manual annotation, and the classifica-
tion system has to be robust to these. Whereas, when it comes
to comparing the performance of two algorithms on the same
dataset, we can only claim that an algorithm is superior if the
difference in performance is statistically significant. And in
this scenario, it seems that 4% of the difference may not be
significant enough to decide the best configuration.

Data augmentation method such as blocks mixing [15]

Features Dropout
Validation

score
Test
score

mel + dom-freq
0.25 95.11 85.42
0.50 94.72 86.14
0.75 94.81 84.15

mel
0.25 95.17 88.20
0.50 95.28 85.31
0.75 95.30 87.35

Table 2. AUC scores on evaluation dataset

and test mixing approaches gave marginal improvement. In-
dividually, the improvement in AUC was consistently better
with test mixing than block mixing. In the BAD challenge,
the evaluation data is unseen and the recordings come from
an entirely different location. This means the acoustic sound-
scape is different and, hence, the performance of classifier
may be poor on the evaluation data. In order to teach the
classifier what it can expect, we expose it to the test data
by mixing it with training data. Unfortunately, we do not
have the labels of test data, so we cannot mix every training
recording with a random test recording. Thus, we perform the
mixing only on training recordings where bird call is present
(positive label). This way no matter what the test recording
has, the training label will remain positive after mixing. Ide-
ally, we can mix every training recording with each of the
test recordings, but we limit ourselves to mixing once, and
thereby doubling the training data for the positive class. In
future, a similar augmentation method will have to be devised
and performed on the negative cases, so that the classifier is
equally exposed to test data ambiance for both the classes.

According to the AUC measures on the test data, the
proposed architecture scored a best of 88.41%. This was
achieved by using only the mel feature, with 0.25 dropout
rate, and test mixing data augmentation.

5. CONCLUSION

A stacked convolutional and bidirectional recurrent neural
network architecture (CBRNN) was proposed for bird audio
detection task. Two features representative of the harmonic
and non-harmonic structures of bird call in an audio were
used to train the network. The evaluation data for the chal-
lenge was from a different acoustic soundscape from that of
the training data. Different generalization techniques using
data augmentation and regularization methods were proposed
to tackle this. A challenging area under curve measure of
88.41% was achieved on this unseen evaluation data, and
95.3% on the development data.
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