
Bird Audio Detection Challenge
Working Notes

Jens Johannsmeier
University of Potsdam

Potsdam, Germany
Email: johannsmeier@uni-potsdam.de

Sebastian Stober
University of Potsdam

Potsdam, Germany

Abstract—This is a description of our algorithm entry for the
Bird Audio Detection Challenge. I will first give a brief summary
followed by a more detailed description of the different parts.

I. OVERVIEW

At first, we simply used a deep convolutional neural network
with mel spectrograms as input. After the convolutional layer,
there is a single fully-connected layer with a sigmoid activation
function producing the output. As the sequences were variable
in length (meaning that the spectrograms couldn’t just be
flattened before putting them through the fully-connected
layer) we opted to take the maximum over the time axis after
the convolutions, which removed any variability in terms of
dimensionality between inputs.

In an attempt to improve performance, we used a scheme
inspired by [1]. We split each sequence into snippets of equal
length (zero-padding if necessary). Each snippet is assigned
the same label as the corresponding sequence. This gives
a correct labeling for sequences that do not contain a bird
(since no snippet will contain one), but will likely mislabel
many snippets from sequences containing birds (all snippets
are assumed to contain a bird even though many will not).
A model is trained on these labels until convergence on a
development set. Then, all non-zero labels in the data are
replaced by the model’s output on the corresponding snippets.
The idea is that the model will learn (to a degree) what a
“non-bird” snippet will look like and “refuse” to assign the
label 1 (or any value close to that) to some of the wrongly-
labeled snippets from sequences containing birds. This process
can be iterated (training on the new dataset containing “soft”
labels) any number of times, e.g. until convergence. The output
for a sequence can then be obtained by aggregating over the
outputs for all corresponding snippets in some way (e.g. we
found taking the maximum works well as a simple method).
In the rest of this report, we will call this the “soft label”
approach.

II. DETAILS

Everything was implemented in Python, using the Blocks
and Fuel libraries [2]. The code repository can be found here:
https://bitbucket.org/xdurch0/bird detection/

A. Dataset and Processing

We used the entirety of the Freefield and Warblr sets.
15% of the sequences were chosen at random and used as
a development set. The audio processing was done in Python
with the help of librosa [3]. Each sequence was transformed
to a mel spectrogram using 128 frequency bins, a window size
of 50001 and a window overlap of 75% (hop size of 1250).
Sequences longer than 600,000 frames were skipped, but this
only amounted to a handful in the Warblr set.

For the soft label approach, we divide the data based on the
mel spectrograms. As a reference, a clip of exactly 10 second
length (441,000 frames) would result in a mel spectogram
with 353 time frames, given our window size and overlap. We
divided these into snippets of 35 frames (so covering roughly
one second of audio) with a hop length of 17 (meaning slightly
above 50% overlap).

B. Model

Our model is a deep convolutional neural network. The data
is first put through four convolutional layers, the parameters
of which are given in Table I. Every layer uses the PReLU
nonlinearity [4] as well as batch normalization [5] (before
the nonlinearity). Pooling is done every second layer, after
applying the nonlinearity. The order is relevant as PReLU
can be non-monotonic. After the last convolutional layer, the
maximum is taken over the time dimension and the remaining
dimensions (frequencies and channels) flattened (resulting in
a 675-dimensional vector) and put through a fully-connected
layer with a sigmoid nonlinearity mapping to a single number,
which is the output of the model.

Overall, the model has 38,077 parameters, most of which
are in the convolutional layers (the last two layers alone have
over 30,000 parameters).

C. Training

Weights were initialized using the scheme described in [4].
Batch size was set to 2048 for the soft label approach (64

when we did the “regular” end-to-end setting), with training
examples being shuffled before every epoch. Note that for the
soft label approach, the snippets coming from one sequence

1This probably unusually large number came from a miscalculation to be
honest, but smaller, more fine-grained windows did not lead to improvements.



TABLE I
CONVOLUTIONAL LAYER PARAMETERS. ALL CONVOLUTIONS USED

STRIDE 1 IN BOTH DIMENSIONS. MAX POOLING WAS DONE OVER AREAS
OF SIZE 2× 2 WITH IDENTICAL STRIDES.

Layer# #Filters Filter Size Max Pooling
1 25 3× 3 No
2 25 3× 3 Yes
3 25 5× 5 No
4 25 5× 5 Yes

were treated as being completely independent, i.e. may or may
not have appeared together in a batch. If needed, data within
each batch was zero-padded to achieve equal length in the
time axis.

Cross-entropy was used as the cost function. We trained
using gradient descent and Adam [6] with the default param-
eters used in Blocks, which are the parameters proposed in
the original paper. We clipped gradients to a norm of 1, but
generally observed gradients much smaller than this.

We used an early stopping approach for terminating the
training; cross-entropy was measured on the development set
after every epoch and training was stopped if no improvement
was seen over the course of three epochs.

For our final submissions, the soft label approach was
iterated six times. We did not test whether the soft labels
had converged at this point, but found very little performance
difference between the later iterations.

D. Submission

For our last two submissions (which are our best ones),
the test set was processed as described above and all of the
snippets run through the model. The “score” (probability) for
each sequence was then the maximum over the probabilities
for all snippets (second to last submission) or the mean of the
maximum three probabilities (last submission).

III. DISCUSSION

A. Things we tried but ended up not using

There are several techniques that certainly have potential
to improve our model, but we were not able to use to any
effect. Among these are tweaks such as different activation
functions, batch sizes, gradient descent step rules or convolu-
tional parameters, but here we would like to briefly discuss
some that we believe are worth mentioning:

Dropout [7] is seen as a way to improve pretty much any
deep model with regards to its generalization ability. However,
we did not see any benefit from using it, likely due to lack of
tuning.

The decision to take the maximum over the time axis after
the last convolutional layer may seem a bit drastic. As an alter-
native, we tried randomly cropping or padding all sequences
to the same length (exactly 441,000 frames). This allowed us
to flatten the time axis as well instead of summarizing over it.
While this significantly improved performance on the training
set, it also negatively impacted generalization performance,

and we could not get it to the same levels as with using the
maximum.

Since the dataset is fairly small by deep learning stan-
dards, we investigated augmenting it by randomly picking two
sequences, and adding them together (and then converting
to a mel spectogram) to form a “new” sequence. This new
sequence would count as containing a bird if either or both of
the added sequences contain one. We sampled sequences such
that the proportion of birds in the augmented data stayed the
same. Since the Freefield and Warblr sets contain about 50%
birds taken together, this meant sampling sequences containing
birds with about 29% probability for the purpose of creating
new sequences. While this augmentation procedure resulted in
some gains for the original end-to-end approach, we did not
see any improvements for the soft label approach – possibly
because the dataset is much larger as every snippet is counted
as one data point, resulting in around a twentyfold increase.
We also thought about trying a “smart” augmentation approach
where new examples are generated on the fly to replace those
that the model already classifies correctly, but did not get
around to implementing this.

Finally, we investigated chirplets [8] as an alternative to mel
spectrograms. Here, we ran into some technical difficulties
since the dataset would have taken up too much space to store
on our server using the default parameters, and transforming
sequences on-the-fly took prohibitively long. We investigated
using chirplets where we maximized over either the filter or
frequency axes, but got worse results than with mel spectro-
grams.

B. Avenues for improvement

One big problem for us was a lack of time and com-
putational resources. Given more of these factors, we could
have conducted a proper search for suitable hyperparameters.
As is, the model is very much unoptimized and many of
the parameter choices (also regarding data preprocessing) are
arbitrary. In particular, our model only has around 38,000
parameters as stated above – to our knowledge, this is very
small for a convolutional network by today’s standards. It may
well be that a much larger (i.e. more filters and/or more layers)
model that has been properly regularized (e.g. by a well-tuned
dropout) would have performed significantly better.

Regarding our soft label approach, the method used for
aggregating the different snippets could have been different.
We used the maximum because it was simple and worked
reasonably well (slightly better than the original end-to-end
approach). However, another method might be more suitable.
We also investigated using the average of the three maximum
snippets, hypothesizing that this would give more robust
results. While this improved performance on the development
set slightly, test set performance was slightly reduced.

Our motivation for the soft label approach was that it might
allow the model to learn on a more fine-grained basis rather
than on long sequences spanning several seconds. Many of
our decisions here have been arbitrary, so further investigation
could pay off. What is nice is that this method is orthogonal to



most considerations regarding the actual model used. In fact,
we used exactly the same model for the soft labels as for the
original end-to-end approach, simply swapping out the dataset.

IV. CONCLUSION

While we are likely far from taking a top spot in the
challenge, we hope that some of the things we did (or did
not do) can shed light on what does or does not work when
trying to detect birds in audio recordings. We might try to gain
further insights into where our model runs into trouble in the
coming weeks and hope to improve it further.

REFERENCES

[1] J. Schlüter, Learning to Pinpoint Singing Voice from Weakly Labeled
Examples, Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR) (pp. 44-50), 2016.

[2] B. Van Merrinboer et al., Blocks and fuel: Frameworks for deep learning,
arXiv preprint arXiv:1506.00619, 2015.

[3] B. McFee et al., librosa: Audio and music signal analysis in python,
Proceedings of the 14th Python in Science Conference, 2015.

[4] K. He et al., Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, Proceedings of the IEEE International
Conference on Computer Vision (pp. 1026-1034), 2015.

[5] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift, arXiv preprint
arXiv:1502.03167, 2015.

[6] D. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980, 2014.

[7] G.E. Hinton et al., Improving neural networks by preventing co-
adaptation of feature detectors, arXiv preprint arXiv:1207.0580, 2012.

[8] D. Stowell and M.D. Plumbley, Framewise heterodyne chirp analysis of
birdsong, Proceedings of the 20th European Signal Processing Conference
(EUSIPCO) (pp. 2694-2698), IEEE, 2012.


